2,3-Oxidosqualene cyclase and cycloartenol-s-adenosylmethionine methyltransferase activities in vivo in the cotyledon and axis tissues of germinating pea seeds.

نویسندگان

  • T Y Fang
  • D J Baisted
چکیده

Axis tissues, root and shoot, of germinating pea seedlings actively synthesize sterol from [2-14C]mevalonate during the first 3 days of germination. In addition to the intermediates of sterol synthesis, cycloartenol and 24-methylenecycloartanol, these tissues also form the triterpene beta-amyrin. The cyclase catalysing the formation of cycloartenol from oxidosqualene is about four times as active as that for beta-amyrin synthesis. 2. Sterol synthesis in the cotyledon is negligible, but cycloartenol and 24-methylenecycloartanol, as well as beta-amyrin, are synthesized there. Oxidosqualene cyclase activity in this tissue is 2.6 times as active for beta-amyrin synthesis as for cycloartenol synthesis. 3. Comparison of the relative amounts of 14C in cycloartenol and 24-methylenecycloartanol in the axis tissues and cotyledons of 3-day-old seedlings point to relatively active cycloartenol-S-adenosylmethionine methyltransferase systems in both axis tissues and a poorly active system in the cotyledon. 4. The role of beta-amyrin synthesis in the germinating pea seedling is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbamoyl phosphate synthetase activity from the cotyledons of developing and germinating pea seeds.

Carbamoyl phosphate synthetase activity was measured in partially purified extracts from cotyledons of developing and germinating seeds of Pisum sativum L. Some properties of the enzyme were established. During cotyledon development, the activity initially increased sharply but decreased during further development. The activity from germinating seeds was only one-tenth of the maximum activity a...

متن کامل

Conversion of a plant oxidosqualene-cycloartenol synthase to an oxidosqualene-lanosterol cyclase by random mutagenesis.

A random mutagenesis/in vivo selection approach was applied to generate and identify mutations that alter the product specificity of oxidosqualene-cycloartenol synthase (CAS) from Arabidopsis thaliana. This work complements previous studies of triterpene cyclase enzymes and was undertaken to provide knowledge of the frequency and locations at which point mutations can alter cyclase product spec...

متن کامل

Protein engineering of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase into parkeol synthase.

A Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase mutant, ERG7(T384Y/Q450H/V454I), produced parkeol but not lanosterol as the sole end product. Parkeol undergoes downstream metabolism to generate compounds 9 and 10. In vitro incubation of parkeol produced a product profile similar to that of the in vivo experiment. In summary, parkeol undergoes a metabolic pathway similar to that of c...

متن کامل

The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis

Cyclic triterpenes constitute one of the most diverse groups of plant natural products. Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens. While prokaryotes have been extensively used for the heterologous production of other classes of terpenes, the synthesis of...

متن کامل

The Oxidosqualene Cyclase from the Oomycete Saprolegnia parasitica Synthesizes Lanosterol as a Single Product

The first committed step of sterol biosynthesis is the cyclisation of 2,3-oxidosqualene to form either lanosterol (LA) or cycloartenol (CA). This is catalyzed by an oxidosqualene cyclase (OSC). LA and CA are subsequently converted into various sterols by a series of enzyme reactions. The specificity of the OSC therefore determines the final composition of the end sterols of an organism. Despite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 150 3  شماره 

صفحات  -

تاریخ انتشار 1975